Literature and Science :
An Interdisciplinary Approach.
Romantic Figures and Scientists.
Important works in Romantic science
When categorizing the many disciplines of science that developed during this period, Romantics believed that explanations of various phenomena should be based upon vera causa, which meant that already known causes would produce similar effects elsewhere. It was also in this way that Romanticism was very anti-reductionist: they did not believe that inorganic sciences were at the top of the hierarchy but at the bottom, with life sciences next and psychology placed even higher. This hierarchy reflected Romantic ideals of science because the whole organism takes more precedence over inorganic matter, and the intricacies of the human mind take even more precedence since the human intellect was sacred and necessary to understanding nature around it and reuniting with it.
Various disciplines on the study of nature that were cultivated by Romanticism included: Schelling's Naturphilosophie; cosmology and cosmogony; developmental history of the earth and its creatures; the new science of biology; investigations of mental states, conscious and unconscious, normal and abnormal; experimental disciplines to uncover the hidden forces of nature – electricity, magnetism, galvanism and other life-forces; physiognomy, phrenology, meteorology, mineralogy, "philosophical" anatomy, among others.
Naturphilosophie
In Friedrich Schelling's Naturphilosophie, he explained his thesis regarding the necessity of reuniting man with nature; it was this German work that first defined the Romantic conception of science and vision of natural philosophy. He called nature "a history of the path to freedom" and encouraged a reunion of man's spirit with nature.
Biology
The "new science of biology" was first termed biologie by Jean-Baptiste Lamarck in 1801, and was "an independent scientific discipline born at the end of a long process of erosion of 'mechanical philosophy,' consisting in a spreading awareness that the phenomena of living nature cannot be understood in the light of the laws of physics but require an ad hoc explanation." The mechanical philosophy of the 17th century sought to explain life as a system of parts that operate or interact like those of a machine. Lamarck stated that the life sciences must detach from the physical sciences and strove to create a field of research that was different from the concepts, laws, and principles of physics. In rejecting mechanism without entirely abandoning the research of material phenomena that does occur in nature, he was able to point out that "living beings have specific characteristics which cannot be reduced to those possessed by physical bodies" and that living nature was un ensemble d'objets métaphisiques ("an assemblage of metaphysical objects"). He did not 'discover' biology; he drew previous works together and organized them into a new science.
Goethe
Johann Goethe's experiments with optics were the direct result of his application of Romantic ideals of observation and disregard for Newton's own work with optics. He believed that color was not an outward physical phenomenon but internal to the human; Newton concluded that white light was a mixture of the other colors, but Goethe believed he had disproved this claim by his observational experiments. He thus placed emphasis on the human ability to see the color, the human ability to gain knowledge through "flashes of insight", and not a mathematical equation that could analytically describe it.
Humboldt
Alexander von Humboldt was a staunch advocate of empirical data collection and the necessity of the natural scientist in using experience and quantification to understand nature. He sought to find the unity of nature, and his books Aspects of Nature and Kosmos lauded the aesthetic qualities of the natural world by describing natural science in religious tones. He believed science and beauty could complement one another.
Natural history
Nichols (2005) examines the connections between science and poetry in the English-speaking world during the 18th and 19th centuries, focusing on the works of American natural historian William Bartram and British naturalist Charles Darwin. Bartram's Travels through North and South Carolina, Georgia, East and West Florida (1791) described the flora, fauna, and landscapes of the American South with a cadence and energy that lent itself to mimicry and became a source of inspiration to such Romantic poets of the era as William Wordsworth, Samuel Taylor Coleridge, and William Blake. Darwin's work, including On the Origin of Species by Means of Natural Selection (1859), marked an end to the Romantic era, when using nature as a source of creative inspiration was commonplace, and led to the rise of realism and the use of analogy in the arts.
Mathematics
Alexander (2006) argues that the nature of mathematics changed in the 19th century from an intuitive, hierarchical, and narrative practice used to solve real-world problems to a theoretical one in which logic, rigor, and internal consistency rather than application were key. Unexpected new fields emerged, such as non-Euclidean geometry and statistics, as well as group theory, set theory and symbolic logic. As the discipline changed, so did the nature of the men involved, and the image of the tragic Romantic genius often found in art, literature, and music may also be applied to such mathematicians as Évariste Galois (1811–32), Niels Henrik Abel (1802–29), and János Bolyai (1802–60). The greatest of the Romantic mathematicians was Carl Friedrich Gauss (1777–1855), who made major contributions in many branches of mathematics.
Physics: Electromagnetism
Christensen (2005) shows that the work of Hans Christian Ørsted (1777–1851) was based in Romanticism. Ørsted's discovery of electromagnetism in 1820 was directed against the mathematically based Newtonian physics of the Enlightenment; Ørsted considered technology and practical applications of science to be unconnected with true scientific research. Strongly influenced by Kant's critique of corpuscular theory and by his friendship and collaboration with Johann Wilhelm Ritter (1776–1809), Ørsted subscribed to a Romantic natural philosophy that rejected the idea of the universal extension of mechanical principles understandable through mathematics. For him the aim of natural philosophy was to detach itself from utility and become an autonomous enterprise, and he shared the Romantic belief that man himself and his interaction with nature was at the focal point of natural philosophy.
Astronomy
Astronomer William Herschel (1738–1822) and his sister Caroline Herschel (1750–1848), were dedicated to the study of the stars; they changed the public conception of the solar system, the Milky Way, and the meaning of the universe.
Chemistry
Sir Humphry Davy was "the most important man of science in Britain who can be described as a Romantic." His new take on what he called "chemical philosophy" was an example of Romantic principles in use that influenced the field of chemistry; he stressed a discovery of "the primitive, simple and limited in number causes of the phenomena and changes observed" in the physical world and the chemical elements already known, those having been discovered by Antoine-Laurent Lavoisier, an Enlightenment philosophe. True to Romantic anti-reductionism, Davy claimed that it was not the individual components, but "the powers associated with them, which gave character to substances"; in other words, not what the elements were individually, but how they combined to create chemical reactions and therefore complete the science of chemistry.
Organic chemistry
The development of organic chemistry in the 19th century necessitated the acceptance by chemists of ideas deriving from Naturphilosophie, modifying the Enlightenment concepts of organic composition put forward by Lavoisier. Of central importance was the work on the constitution and synthesis of organic substances by contemporary chemists.
Popular image of science
Another Romantic thinker, who was not a scientist but a writer, was Mary Shelley. Her famous book Frankenstein also conveyed important aspects of Romanticism in science as she included elements of anti-reductionism and manipulation of nature, both key themes that concerned Romantics, as well as the scientific fields of chemistry, anatomy, and natural philosophy. She stressed the role and responsibility of society regarding science, and through the moral of her story supported the Romantic stance that science could easily go wrong unless man took more care to appreciate nature rather than control it.
John Keats' portrayal of "cold philosophy" in the poem Lamia influenced Edgar Allan Poe's 1829 sonnet "To Science" and Richard Dawkins' 1998 book, Unweaving the Rainbow.
from : Romanticism and Science.